IN THE UNITED STATES PATENT AND TRADEMARK OFFICE In re Patent Application of Date: May 15, 2008 Applicants: Bednorz et al. Docket: YO987-074BZ Serial No.: 08/479,810 Group Art Unit: 1751 Filed: June 7, 1995 Examiner: M. Kopec For: NEW SUPERCONDUCTIVE COMPOUNDS HAVING HIGH TRANSITION TEMPERATURE, METHODS FOR THEIR USE AND PREPARATION Commissioner for Patents United States Patent and Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450 ## **CORRECTED APPEAL BRIEF** Part VII CFR 37 §41.37(c)(1)(vii) # VOLUME 3 Part 2 Argument For the Patentability of Each Rejected Claims 150-322 Respectfully submitted, /Daniel P Morris/ Dr. Daniel P. Morris, Esq. Reg. No. 32,053 (914) 945-3217 IBM CORPORATION Intellectual Property Law Dept. P.O. Box 218 Yorktown Heights, New York 10598 Claim 150 which is allowed recites: CLAIM 150 The superconductive apparatus according to claim 149 in which the copper-oxide compound of the superconductive composition includes at least one rare-earth or rare-earth-like element and at least one alkaline-earth element. ### **CLAIM 151** Claim 151which is allowed recites: CLAIM 151 The superconductive apparatus according to claim 150 in which the rare-earth or rare-earth-like element is lanthanum. ## **CLAIM 152** Claim 152 which is allowed recites: CLAIM 152 The superconductive apparatus according to claim 150 in which the alkaline-earth element is barium. Claim 153 recites: CLAIM 149 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made <u>of a superconductive</u> <u>composition</u>, the superconductive composition consisting essentially <u>of a copper-oxide</u> compound <u>having a layer-type</u> <u>perovskite-like crystal structure</u>, the composition having a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) causing an electric current to flow in the superconductor element. CLAIM 153 The superconductive apparatus according to claim 149 in which the <u>copper-oxide compound of the superconductive composition includes mixed valent copper ions.</u> The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 154 recites: CLAIM 149 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made <u>of a superconductive</u> <u>composition</u>, the superconductive composition consisting essentially <u>of a copper-oxide</u> compound <u>having a layer-type</u> <u>perovskite-like crystal structure</u>, the composition having a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) causing an electric current to flow in the superconductor element. CLAIM 153 The superconductive apparatus according to claim 149 in which the <u>copper-oxide compound of the superconductive composition includes mixed valent copper ions.</u> CLAIM 154 The superconductive apparatus according to claim 153 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 155 recites: CLAIM 149 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) causing an electric current to flow in the superconductor element. CLAIM 153 The superconductive apparatus according to claim 149 in which the <u>copper-oxide compound of the superconductive composition includes mixed valent copper ions.</u> CLAIM 154 The superconductive apparatus according to claim 153 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. CLAIM 155 The superconductive apparatus according to claim 154 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 156 which is allowed recites: CLAIM 156 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one rare-earth or rare-earth-like element and at least one alkaline-earth element, the composition having a superconductive/resistive-transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. Claim 157 which is allowed recites: CLAIM 157 The superconductive apparatus according to claim 156 in which the rare-earth or rare-earth-like element is lanthanum. #### **CLAIM 158** Claim 158 which is allowed recites: CLAIM 158 The superconductive apparatus according to claim 156 in which the alkaline-earth element is barium. # **CLAIM 159** Claim 159 which is allowed recites: CLAIM 159 The superconductive apparatus according to claim 156 in which the copper-oxide compound of the superconductive composition includes
mixed valent copper ions. Claim 160 which is allowed recites: CLAIM 160 The superconductive apparatus according to claim 159 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. ## **CLAIM 161** Claim 161 which is allowed recites: CLAIM 161 The superconductive apparatus according to claim 160 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion. #### Claim 162 recites: CLAIM 162 An apparatus comprising copper oxide having a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase; a current source passing an electrical supercurrent through said copper oxide while it is in said superconducting state; said copper oxide includes at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 163 recites: CLAIM 163 An apparatus comprising: a composition comprising copper, oxygen and any element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element, where said composition is a mixed copper oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K; a temperature controller maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K; and a current source passing an electrical current through said composition while said composition is in said superconducting state. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 164 recites: CLAIM 164 An apparatus comprising: a <u>composition exhibiting</u> a superconductive state at a temperature greater than or equal to 26°K; a temperature controller maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state: a current source passing an electrical current through said composition while said composition is in said superconductive state; and said composition including a copper oxide and an element selected from the group consisting of Group II A element, a rare earth element and a Group III B element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 165 recites: CLAIM 165 An apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element, a rare earth element; and a Group III B element; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 166 recites: CLAIM 166 An apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=o of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the
Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 167 which is allowed recites: CLAIM 167 An apparatus comprising: a copper oxide having a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase; a current source passing an electrical supercurrent through said copper oxide while it is in said superconducting state; said copper oxide includes an element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element. #### **CLAIM 168** Claim 168 which is allowed recites: CLAIM 168 An apparatus comprising: a composition including copper, oxygen and an element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed copper oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K; a temperature controller maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K; and a current source passing an electrical current through said composition while said composition is in said superconducting state. ### **CLAIM 169** Claim 169 which is allowed recites: CLAIM 169 An apparatus comprising: a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K; a temperature controller maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state; a current source passing an electrical current through said composition while said composition is in said superconductive state; and said composition including a copper oxide and at least one element selected from the group consisting of Group II A and at least one element selected from the group consisting of a rare earth element and a Group III B element. #### **CLAIM 170** Claim 170 which is allowed recites: CLAIM 170 A superconductive apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and (c) a current source causing an electric current to flow in the superconductor element. #### **CLAIM 171** Claim 171 which is allowed recites: CLAIM 171 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive-resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and (c) a current source causing an electric current to flow in the superconductor element. #### **CLAIM 172** Claim 172 which is allowed recites: CLAIM 172 An apparatus comprising: a transition metal oxide having a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase; a current source passing an electrical supercurrent through said copper oxide while it is in said superconducting state; said transitional metal oxide includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element. Claim 173 which is allowed recites: CLAIM 173 An apparatus comprising: a composition including a transition metal, oxygen and an element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed transitional metal oxide formed from said transition metal and said oxygen, said mixed transition metal oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K; a temperature controller maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K; and a current source passing an electrical current through said composition while said composition is in said superconducting state. **CLAIM 174** Claim 174 which is allowed recites: CLAIM 174 An apparatus: forming a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K; a temperature controller maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state; a current source passing an electrical current through said composition while said composition is in said superconductive state; and said composition including a transitional metal oxide and at least one element selected from the group consisting of Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element. # **CLAIM 175** Claim 175 which is allowed recites: CLAIM 175 A superconductive apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes an element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. #### **CLAIM 176** Claim 176 which is allowed recites: CLAIM 176 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal-oxide compound having a layer-type perovskite-like crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and (c) a current source causing an electric current to flow in the superconductor element. #### **CLAIM 177** Claim 177 which is allowed recites: CLAIM 177 An apparatus comprising: a copper oxide having a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase; a current source passing an electrical
supercurrent through said copper oxide while it is in said superconducting state; said copper oxide includes at least one Group II A element, and at least one element selected from the group consisting of a rare earth element and a Group III B element. ## **CLAIM 178** Claim 178 which is allowed recites: CLAIM 178 An apparatus comprising: a composition including copper, oxygen, a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed copper oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K; a temperature controller maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K; and a current source passing an electrical current through said composition while said composition is in said superconducting state. CLAIM 179 which is allowed recites: CLAIM 179 A structure comprising: a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K; a temperature controller maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state; a current source passing an electrical current through said composition while said composition is in said superconductive state; and said composition including a copper oxide, a Group II A element, at least one element selected from the group consisting of a rare earth element and a Group III B element. #### **CLAIM 180** Claim 180 which is allowed recites: CLAIM 180 A superconductive apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the composition having a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes a Group II A element, and at least one element selected from the group consisting of a rare earth element and a Group III B element; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. Claim 181 which is allowed recites: CLAIM 181 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a layer-type perovskite-like crystal structure, the copper-oxide compound including Group II A element, and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive-resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. #### Claim 182 recites: CLAIM 182 An apparatus comprising a composition having a transition temperature greater than or equal to 26°K, the composition including a rare earth or alkaline earth element, a transition metal element capable of exhibiting multivalent states and oxygen, including at least one phase that exhibits superconductivity at temperature greater than or equal to 26°K, a temperature controller maintaining said composition at said temperature to exhibit said superconductivity and a current source passing an electrical superconducting current through said composition with said phrase exhibiting said superconductivity. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| ### Claim 183 recites: CLAIM 183 An apparatus comprising a superconducting transition metal oxide having a superconductive onset temperature greater than or equal to 26°K, a temperature controller maintaining said superconducting transition metal oxide at a temperature less than said superconducting onset temperature and a current source flowing a superconducting current therein. ### Claim 184 recites: CLAIM 184 An apparatus comprising a superconducting copper oxide having a superconductive onset temperature greater than or equal to 26°K, a temperature controller maintaining said <u>superconducting copper oxide</u> at a temperature less than said superconducting onset temperature and a current source flowing a superconducting current in said superconducting oxide. Claim 185 which is allowed recites: CLAIM 185 An apparatus comprising a superconducting oxide composition having a superconductive onset temperature greater than or equal to 26°K, a temperature controller maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and a current source flowing a superconducting current therein, said composition comprising at least one each of rare earth, an alkaline earth, and copper. ### **CLAIM 186** Claim 186 which is allowed recites: CLAIM 186 An apparatus comprising a superconducting oxide composition having a superconductive onset temperature greater than or equal to 26°K, a temperature controller maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and a current source flowing a superconducting electrical current therein, said composition comprising at least one each of a Group III B element, an alkaline earth, and copper. ### Claim 187 recites: CLAIM 187 An apparatus comprising a superconducting electrical current in a <u>transition metal oxide</u> having a Tc greater than or equal to 26°K and maintaining said transition metal oxide at a temperature less than said Tc. ### Claim 188 recites: CLAIM 188 An apparatus comprising a current source flowing a superconducting current in <u>a copper oxide</u> having a Tc greater than or equal to 26°K and a temperature controller maintaining said copper oxide at a temperature less than said Tc. Claim 189 which is allowed recites: CLAIM 189 An apparatus comprising: a composition of the formula BaLa5-xCu5O5(3-y), wherein x is from about 0.75 to about 1 and y is the oxygen deficiency resulting from annealing said composition at temperatures from about 540oC to about 950oC and for times of about 15 minutes to about 12 hours, said composition having a metal oxide phase which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller maintaining the temperature of said composition at a temperature less than said critical temperature to induce said superconducting state in said metal oxide phase; and a current source passing an electrical current through said composition while said metal oxide phase is in said superconducting state. ### **CLAIM 190** Claim 190 which is allowed recites: CLAIM 190 An apparatus comprising a current source flowing a superconducting electrical current in a composition of matter having a Tc greater than or equal to 26°K, said composition comprising at least one each of a Group III B element, an alkaline earth, and copper oxide and a temperature controller maintaining said composition of matter at a temperature less than Tc. ### **CLAIM 191** CLAIM 191 which is allowed recites: CLAIM 191 An apparatus comprising a current source flowing a superconducting electrical current in a composition of matter having a Tc greater than or equal to 26°K, said composition comprising at least one each of a rare earth, alkaline earth, and copper oxide and a temperature controller maintaining said composition of matter at a temperature less than said Tc. ### Claim 192 recites: CLAIM 192 An apparatus comprising a current source flowing a superconducting electrical current in a composition of matter having a Tc greater than or equal to 26°K, said composition comprising at least one each of a rare earth, and copper oxide and a temperature
controller maintaining said composition of matter at a temperature less than said Tc. ### Claim 193 recites: CLAIM 193 An apparatus comprising a current source flowing a superconducting electrical current in a composition of matter having a Tc greater than or equal to 26°K carrying, said composition comprising at least one each of a Group III B element, and copper oxide and a temperature controller maintaining said composition of matter at a temperature less than said Tc. #### Claim 194 recites: CLAIM 194 An apparatus comprising a current source flowing a superconducting electrical current in <u>a transition</u> <u>metal oxide</u> comprising a Tc greater than or equal to 26°K and a temperature controller maintaining said transition metal oxide at a temperature less than said Tc. #### Claim 195 recites: CLAIM 195 An apparatus comprising a current source flowing a superconducting electrical current in a copper oxide composition of matter comprising a Tc greater than or equal to 26°K and a temperature controller maintaining said copper oxide composition of matter at a temperature less than said Tc. Claim 196 which is allowed recites: CLAIM 196 An apparatus comprising: a composition including a transition metal, a Group III B element, an alkaline earth element, and oxygen, where said composition is a mixed transition metal oxide having a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K, a temperature controller maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K, and a current source passing an electrical current through said composition while said composition is in said superconducting state. # **CLAIM 197** Claim 197 which is allowed recites: CLAIM 197 The apparatus of claim 196, where said transition metal is copper. ### Claim 198 recites: CLAIM 198 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ### Claim 199 recites: CLAIM 198 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 199 The superconductive apparatus according to claim 198 in which the copper-oxide compound of the superconductive composition includes at least one element selected from the group consisting of a rare-earth element, a Group III B element and an alkaline-earth element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has Claim 200 recites: CLAIM 198 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 199 The superconductive apparatus according to claim 198 in which the copper-oxide compound of the superconductive composition includes at least one element selected from the group consisting of a rare-earth element, a Group III B element and an alkaline-earth element. CLAIM 200 The superconductive apparatus according to claim 199 in which the rare-earth is lanthanum. ### Claim 201 recites: CLAIM 198 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 199 The superconductive apparatus according to claim 198 in which the copper-oxide compound of the superconductive composition includes at least one element selected from the group consisting of a rare-earth element, a Group III B element and an alkaline-earth element. CLAIM 201 The superconductive apparatus according to claim 199 in which the <u>alkaline-earth element is barium</u>. ### Claim 202 recites: CLAIM 198 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 202 The superconductive apparatus according to claim 198 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 203 recites: CLAIM 198 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a
superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 202 The superconductive apparatus according to claim 198 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. CLAIM 203 The superconductive apparatus according to claim 202 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. Claim 204 recites: CLAIM 198 A superconductive apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 202 The superconductive apparatus according to claim 198 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. CLAIM 203 The superconductive apparatus according to claim 202 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. CLAIM 204 The superconductive apparatus according to claim 203 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion. ### Claim 205 recites: CLAIM 205 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a rare-earth element, a Group III B element and an alkaline-earth element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. ### Claim 206 recites: CLAIM 205 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a rare-earth element, a Group III B element and an alkaline-earth element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 206 The superconductive apparatus according to claim 205 in which said at least one element is lanthanum. ### Claim 207 recites: CLAIM 205 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a rare-earth element, a Group III B element and an alkaline-earth element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 207 The superconductive apparatus according to claim 205 in which the alkaline-earth element is barium. ### Claim 208 recites: CLAIM 205 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a rare-earth element, a Group III B element and an alkaline-earth element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 208 The superconductive apparatus according to claim 205 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. ### Claim 209 recites: CLAIM 205 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a rare-earth element, a Group III B element and an alkaline-earth element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 208 The superconductive apparatus according to claim 205 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. CLAIM 209 The superconductive apparatus according to claim 208 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. ### Claim 210 recites: CLAIM 205 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a rare-earth element, a Group III B element and an alkaline-earth element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. CLAIM 208 The superconductive apparatus according to claim 205 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. CLAIM 209 The
superconductive apparatus according to claim 208 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. CLAIM 210 The superconductive apparatus according to claim 209 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ### Claim 211 recites: CLAIM 211 A superconductive apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element, a rare earth element; and a Group III B element; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ### Claim 212 recites: CLAIM 212 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=o of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 213 which is allowed recites: CLAIM 213 A superconductive apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. Claim 214 which is allowed recites: CLAIM 214 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound having a substantially layered perovskite crystal structure, the copper-oxide compound including a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive-resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. Claim 215 which is allowed recites: CLAIM 215 A superconductive apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal oxide compound having a substantially layered perovskite crystal structure, the composition having a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element; - (b) a temperature controller maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition Tc of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. Claim 216 which is allowed recites: CLAIM 216 A superconductive apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal-oxide compound having a substantially layered perovskite crystal structure, the transition metal-oxide compound including a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition having a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0,
the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a current source causing an electric current to flow in the superconductor element. ### Claim 217 recites: CLAIM 182 An apparatus comprising a composition having a transition temperature greater than or equal to 26°K, the composition including a rare earth or alkaline earth element, a transition metal element capable of exhibiting multivalent states and oxygen, including at least one phase that exhibits superconductivity at temperature greater than or equal to 26°K, a temperature controller maintaining said composition at said temperature to exhibit said superconductivity and a current source passing an electrical superconducting current through said composition with said phrase exhibiting said superconductivity. CLAIM 217 An apparatus according to claim 182 wherein said composition comprises <u>a substantially layered</u> perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. #### Claim 218 recites: CLAIM 183 An apparatus comprising a superconducting transition metal oxide having a superconductive onset temperature greater than or equal to 26°K, a temperature controller maintaining said superconducting transition metal oxide at a temperature less than said superconducting onset temperature and a current source flowing a superconducting current therein. CLAIM 218 An apparatus according to claim 183 wherein said <u>superconducting transition metal oxide comprises a</u> <u>substantially layered perovskite crystal structure</u>. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| #### Claim 219 recites: CLAIM 184 An apparatus comprising a superconducting copper oxide having a superconductive onset temperature greater than or equal to 26°K, a temperature controller maintaining said <u>superconducting copper oxide</u> at a temperature less than said superconducting onset temperature and a current source flowing a superconducting current in said superconducting oxide. CLAIM 219 An apparatus according to claim 184 wherein said superconducting copper oxide comprises a substantially layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| Claim 220 which is allowed recites: CLAIM 220 An apparatus according to claim 185 wherein said superconducting oxide composition comprises a substantially layered perovskite crystal structure. ### **CLAIM 221** Claim 221 which is allowed recites: CLAIM 221 An apparatus according to claim 186 wherein said superconducting oxide composition comprises a substantially layered perovskite crystal structure. Claim 222 which depends on claim 187 recites: CLAIM 187 An apparatus comprising a superconducting electrical current in a <u>transition metal oxide</u> having a Tc greater than or equal to 26°K and maintaining said transition metal oxide at a temperature less than said Tc. CLAIM 222 An apparatus according to claim 187 wherein said transition (SIC) metal oxide comprises a substantially layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. #### Claim 223 recites: CLAIM 188 An apparatus comprising a current source flowing a superconducting current in <u>a copper oxide</u> having a Tc greater than or equal to 26°K and a temperature controller maintaining said copper oxide at a temperature less than said Tc. CLAIM 223 An apparatus according to claim 188 wherein said copper oxide comprises a substantially layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 224 which is allowed recites: CLAIM 224 An apparatus according to claim 189 wherein said composition comprises a substantially layered perovskite crystal structure. **CLAIM 225** Claim 225 which is allowed recites: CLAIM 225 An apparatus according to claim 190 wherein said composition of matter
comprises a substantially layered perovskite crystal structure. **CLAIM 226** Claim 226 which is allowed recites: CLAIM 226 An apparatus according to claim 191 wherein said composition of matter comprises substantially layered perovskite crystal structure. #### CLAIM 227 recites: CLAIM 192 An apparatus comprising a current source flowing a superconducting electrical current in a composition of matter having a Tc greater than or equal to 26°K, said composition comprising at least one each of a rare earth, and copper oxide and a temperature controller maintaining said composition of matter at a temperature less than said Tc. CLAIM 227 An apparatus according to claim 192 wherein said composition of matter comprises a <u>substantially layered perovskite</u> <u>crystal structure</u>. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ### CLAIM 228 recites: CLAIM 193 An apparatus comprising a current source flowing a superconducting electrical current in a composition of matter having a Tc greater than or equal to 26°K carrying, said composition comprising at least one each of a Group III B element, and copper oxide and a temperature controller maintaining said composition of matter at a temperature less than said Tc. CLAIM 228 An apparatus according to claim 193 wherein said composition of matter comprises substantially layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| ### CLAIM 229 recites: CLAIM 194 An apparatus comprising a current source flowing a superconducting electrical current in <u>a transition</u> metal oxide comprising a Tc greater than or equal to 26°K and a temperature controller maintaining said transition metal oxide at a temperature less than said Tc. CLAIM 229 An apparatus according to claim 194 wherein said transition (SIC) metal oxide comprises <u>substantially</u> layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ### CLAIM 230 recites: CLAIM 195 An apparatus comprising a current source flowing a superconducting electrical current in a copper oxide composition of matter comprising a Tc greater than or equal to 26°K and a temperature controller maintaining said copper oxide composition of matter at a temperature less than said Tc. CLAIM 230 An apparatus according to claim 195 wherein said copper oxide composition comprises substantially layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| Claim 231 which is allowed recites: CLAIM 231 An apparatus comprising a composition of matter having a Tc greater than or equal to 26°K carrying a superconducting current, said composition comprising at least one each of a rare earth, an alkaline earth, and copper oxide. CLAIM 232 recites: CLAIM 232 An apparatus comprising: a transition metal oxide comprising a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K, a temperature controller for maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase, and a source of an electrical supercurrent through said transition metal oxide while it is in said superconducting state. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. CLAIM 233 recites: CLAIM 232 An apparatus comprising: a transition metal oxide comprising a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K, a temperature controller for maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase, and a source of an electrical supercurrent through said transition metal oxide while it is in said superconducting state. CLAIM 233 An apparatus according to claim 232, where said transition metal oxide is comprised of a <u>transition metal</u> <u>capable of exhibiting multivalent states</u>. The Examiner has not made as to this claim a prima facie case of lack of enablement
for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. CLAIM 234 recites: CLAIM 232 An apparatus comprising: a transition metal oxide comprising a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K, a temperature controller for maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase, and a source of an electrical supercurrent through said transition metal oxide while it is in said superconducting state. CLAIM 234 An apparatus according to claim 232, where said transition metal oxide is comprised of a Cu oxide. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 235 which is allowed recites: CLAIM 235 An apparatus comprising: a composition including a transition metal, a rare earth or rare earth-like element, an alkaline earth element, and oxygen, where said composition is a mixed transition metal oxide comprising a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K, a temperature controller for maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K, and a source of an electrical current through said composition while said composition is in said superconducting state. Claim 236 which is allowed recites: CLAIM 236 An apparatus according to claim 235, where said transition metal is copper. CLAIM 237 recites: CLAIM 237 An apparatus comprising: a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K, a temperature controller for maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state, and a source of an electrical current through said composition while said composition is in said superconductive state. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| CLAIM 238 recites: CLAIM 237 An apparatus comprising: a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K, a temperature controller for maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state, and a source of an electrical current through said composition while said composition is in said superconductive state. CLAIM 238 An apparatus according to claim 237, where said <u>composition is comprised of a metal oxide</u>. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. CLAIM 239 recites: CLAIM 237 An apparatus comprising: a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K, a temperature controller for maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state, and a source of an electrical current through said composition while said composition is in said superconductive state. CLAIM 238 An apparatus according to claim 237, where said composition is comprised of a metal oxide. CLAIM 239 An apparatus according to claim 238, where said composition is <u>comprised of a transition metal oxide</u>. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ## CLAIM 240 recites: CLAIM 240 An apparatus capable of carrying electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting
this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 241 which is allowed recites: CLAIM 241 An apparatus according to claim 240 in which the copper-oxide compound of the superconductive composition includes at least one rare-earth or rare-earthlike element and at least one alkaline-earth element. Claim 242 which is allowed recites: CLAIM 242 An apparatus according to claim 241 in which the rare-earth or rare-earth-like element is lanthanum. ## **CLAIM 243** Claim 243 which is allowed recites: CLAIM 243 An apparatus according to claim 241 in which the alkaline-earth element is barium. ## CLAIM 244 recites: CLAIM 240 An apparatus capable of carrying electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 244 An apparatus according to claim 240 in which the <u>copper-oxide compound of the superconductive</u> composition includes mixed valent copper ions. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ## CLAIM 245 recites: CLAIM 240 An apparatus capable of carrying electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 244 An apparatus according to claim 240 in which the <u>copper-oxide compound of the superconductive</u> composition includes mixed valent copper ions. CLAIM 245 An apparatus according to claim 244 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ## CLAIM 246 recites: CLAIM 240 An apparatus capable of carrying electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 244 An apparatus according to claim 240 in which the <u>copper-oxide compound of the superconductive</u> composition includes mixed valent copper ions. CLAIM 245 An apparatus according to claim 244 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. CLAIM 246 An apparatus according to claim 245 in which oxygen is present in the <u>copper-oxide compound in a</u> nonstoichiometric atomic proportion. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. CLAIM 247 which is allowed recites: equal to 26°K; CLAIM 247 An apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one rare-earth or rare-earth-like element and at least one alkaline-earth element, the composition comprising a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or - (b) a temperature controller for maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. Claim 248 which is allowed recites: CLAIM 248 An apparatus according to claim 247 in which the rare-earth or rare-earth-like element is lanthanum. ## **CLAIM 249** Claim 249 which is allowed recites: CLAIM 249 An apparatus according to claim 247 in which the alkaline-earth element is barium. ## **CLAIM 250** Claim 250 which is allowed recites: CLAIM 250 An apparatus according to claim 247 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. Claim 251 which is allowed recites:
CLAIM 251 An apparatus according to claim 250 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. ## **CLAIM 252** Claim 252 which is allowed recites: CLAIM 252 An apparatus according to claim 251 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion. CLAIM 253 recites: CLAIM 253 An apparatus comprising: a copper oxide comprising a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller for maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase; a source of an electrical supercurrent through said copper oxide while it is in said superconducting state; said copper oxide includes at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. CLAIM 254 recites: CLAIM 254 An apparatus comprising: a composition including copper, oxygen and an element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element, where said composition is a mixed copper oxide comprising a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K; a temperature controller for maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K; and a source of an electrical current through said composition while said composition is in said superconducting state. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. CLAIM 255 recites: CLAIM 255 An apparatus comprising: a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K; a temperature controller for maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state; a source of an electrical current through said composition while said composition is in said superconductive state; and said composition including a copper oxide and an element selected from the group consisting of Group II A element, a rare earth element and a Group III B element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ## CLAIM 256 recites: CLAIM 256 An apparatus capable of carrying an electriccurrent flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the composition comprising a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element, a rare earth element; and a Group III B element; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ## CLAIM 257 recites: CLAIM 257 An apparatus capable of carrying an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element, the composition comprising a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and
Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 258 which is allowed recites: CLAIM 258 An apparatus comprising: a copper oxide comprising a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller for maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase; a source of an electrical supercurrent through said copper oxide while it is in said superconducting state; said copper oxide includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element. Claim 259 which is allowed recites: CLAIM 259 An apparatus comprising: a composition including copper, oxygen and an element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed copper oxide comprising a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K; a temperature for maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K; and a source of an electrical current through said composition while said composition is in said superconducting state. ## **CLAIM 260** Claim 260 which is allowed recites: CLAIM 260 An apparatus comprising: a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K; a temperature for maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state; a source of an electrical current through said composition while said composition is in said superconductive state; and said composition including a copper oxide and at least one element selected from the group consisting of Group II A and at least one element selected from the group consisting of a rare earth element and a Group III B element. ## **CLAIM 261** Claim 261 which is allowed recites: CLAIM 261 An apparatus capable of carrying an electriccurrent flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the composition comprising a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. #### **CLAIM 262** Claim 262 which is allowed recites: CLAIM 262 An apparatus for conducting an electric current essentially without resistive losses, comprising: (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition comprising a superconductive/resistive transition defining a superconductive-resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively- zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. # **CLAIM 263** Claim 263 which is allowed recites: CLAIM 263 An apparatus comprising: a transition metal oxide comprising a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller for maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase; a source of an electrical supercurrent through said transition metal oxide while it is in said superconducting state; said transitional metal oxide includes at least one element selected from the group consisting of a Group II A element and at lest one element selected from the group consisting of a rare earth element and a Group III B element. #### **CLAIM 264** Claim 264 which is allowed recites: CLAIMS 264 An apparatus comprising: a composition including a transition metal, oxygen and an element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, where said composition is a mixed transitional metal oxide formed from said transition metal and said oxygen, said mixed transition metal oxide comprising a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K; a temperature controller for maintaining said composition in said Claim 265 which is allowed recites: CLAIM 265 An apparatus comprising: a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K; a temperature controller for maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state; a source of an electrical current through said composition while said composition is in said superconductive state; and said composition including a transitional metal oxide and at least one element selected from the group consisting of Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element. Claim 266 which is allowed recites: CLAIM 266 An apparatus capable of carrying an electriccurrent flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal oxide compound comprising a layer-type perovskite-like crystal structure, the composition comprising a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. Claim 267 which is allowed recites: CLAIM 267 An apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal-oxide compound comprising a layer-type perovskite-like crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition comprising a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 268 recites: CLAIM 268 An apparatus comprising: <u>a copper oxide</u> comprising a phase therein which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller for maintaining the temperature of said material at a temperature less than said critical temperature to produce said superconducting state in said phase; a source for an electrical supercurrent through said copper oxide while it is in said superconducting state; said copper oxide includes at least one element selected from group consisting of a Group II A element, at least one element selected from the group consisting of a rare earth element and at least one element selected from the group consisting of a Group III B element. The Examiner has not made as to this claim a prima facie case of lack of enablement
for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 269 which is allowed recites: CLAIM 269 An apparatus comprising: a composition including copper, oxygen and an element selected from the group consisting of at least one Group II A element and at least one element selected from the group consisting of a rare earth element at least one element selected from the group consisting of a Group III B element, where said composition is a mixed copper oxide comprising a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K; a temperature controller for maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K; and a source of an electrical current through said composition while said composition is in said superconducting state. Claim 270 which is allowed recites: CLAIM 270 An apparatus comprising: a composition exhibiting a superconductive state at a temperature greater than or equal to 26°K; a temperature controller for maintaining said composition at a temperature greater than or equal to 26°K at which temperature said composition exhibits said superconductive state; a source of an electrical current through said composition while said composition is in said superconductive state; and said composition including a copper oxide and at least one element selected from the group consisting of Group II A element, at least one element selected from the group consisting of a rare earth element and at least one element selected from the group consisting of a Group III B element. Claim 271 which is allowed recites: CLAIM 271 An apparatus for causing an electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layer-type perovskite-like crystal structure, the composition comprising a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element, at least one element selected from the group consisting of a Group III B element; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. Claim 272 which is allowed recites: CLAIM 272 An apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a layertype perovskite-like crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a group II A element, at least one element selected from the group consisting of a rare earth element and at least one element selected from the group consisting of a Group III B element, the composition comprising a superconductive-resistive transition temperature defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. #### CLAIM 273 recites: CLAIM 273 An apparatus comprising a composition comprising a transition temperature greater than or equal to 26°K, the composition including a rare earth or alkaline earth element, a transition metal element capable of exhibiting multivalent states and oxygen, including at least one phase that exhibits superconductivity at temperature greater than or equal to 26°K, a temperature controller for maintaining said composition at said temperature to exhibit said superconductivity and a source of an electrical superconducting current through said composition with said phrase exhibiting said superconductivity. | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| ## Claim 274 recites: CLAIM 274 An apparatus comprising providing a superconducting transition metal oxide comprising a superconductive onset temperature greater than or equal to 26°K, a temperature controller for maintaining said superconducting <u>transition metal oxide</u> at a temperature less than said superconducting onset temperature and a source of a superconducting current therein. ## Claim 275 recites: CLAIM 275 An apparatus comprising <u>a superconducting</u> <u>copper oxide comprising a superconductive</u> onset temperature greater than or equal to 26°K, a temperature controller for maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and a source of a superconducting current in said superconducting oxide. Claim 276 which is allowed recites: CLAIM 276 An apparatus comprising a superconducting oxide composition comprising a superconductive onset temperature greater than or equal to 26°K, a temperature controller for maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and a source of a superconducting current therein, said composition comprising at least one each of rare earth, an alkaline earth, and copper. #### **CLAIM 277** Claim 277 which is allowed recites: CLAIM 277 An apparatus comprising a superconducting oxide composition comprising a superconductive onset temperature greater than or equal to 26°K, a temperature controller for maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and a source of a superconducting electrical current therein, said composition comprising at least one each of a Group III B element, an alkaline earth, and copper. #### CLAIM 278 recites: CLAIM 278 An apparatus comprising a source of a superconducting electrical current in a <u>transition metal oxide</u> comprising a Tc greater than or equal to 26°K and a temperature controller for maintaining said transition metal oxide at a temperature less than said Tc. ## CLAIM 279 recites: CLAIM 279 An apparatus comprising a source of a superconducting current in a copper oxide comprising a Tc greater than or equal to 26°K and a temperature controller for maintaining said copper oxide at a temperature less than said Tc. Claim 280 which is allowed recites: CLAIM 280 An apparatus comprising: a composition of the formula Ba_xLa_{x-5}, Cu₅O_y, wherein x is from about 0.75 to about 1 and y is the oxygen deficiency resulting from annealing said composition at temperatures from about 540°C to about 950°C and for times of about 15 minutes to about 12 hours, said composition comprising a metal oxide phase which exhibits a superconducting state at a critical temperature greater than or equal to 26°K; a temperature controller for maintaining the temperature of said composition at a temperature less than said critical temperature to induce said superconducting state in said metal oxide phase; and a source of an electrical current through said composition while said metal oxide phase is in said superconducting state. # **CLAIM 281** Claim 281 which is allowed recites: CLAIM 281 An apparatus comprising a source of a superconducting electrical current in a composition of matter comprising a Tc greater than or equal to 26°K, said composition comprising at least one each of a III B element, an alkaline earth, and copper oxide and a temperature controller for maintaining said composition of matter at a temperature less than Tc. ## **CLAIM 282** Claim 282 which is allowed recites: CLAIM 282 An apparatus comprising a source of a superconducting electrical current in a composition of matter comprising a Tc greater than or equal to 26°K, said composition comprising at least one each of a rare earth, alkaline earth, and copper oxide and a temperature controller for maintaining said composition of matter at a temperature less than said Tc. ## CLAIM 283 recites: CLAIM 283 An apparatus comprising a source of a superconducting electrical current in a composition of matter comprising a Tc greater than or equal to 26°K, <u>said</u>
composition comprising at least one each of a rare earth, <u>and copper oxide</u> and a temperature controller for maintaining said composition of matter at a temperature less than said Tc. ## CLAIM recites: CLAIM 284 An apparatus comprising a source of a superconducting electrical current in a composition of matter comprising a Tc greater than or equal to 26°K carrying, said composition comprising at least one each of a III B element, and copper oxide and a temperature controller for maintaining said composition of matter at a temperature less than said Tc. #### CLAIM 285 recites: CLAIM 285 An apparatus comprising a source of a superconducting electrical current in a transition metal oxide comprising a Tc greater than or equal to 26°K and a temperature controller for maintaining said transition metal oxide at a temperature less than said Tc. #### CLAIM 286 recites: CLAIM 286 An apparatus comprising a source of a superconducting electrical <u>current in a copper oxide</u> <u>composition</u> of matter comprising a Tc greater than or equal to 26°K and a temperature controller for maintaining said copper oxide composition of matter at a temperature less than said Tc. Claim 287 which is allowed recites: CLAIM 287 An apparatus comprising: a composition including a transition metal, a group IIIB element, an alkaline earth element, and oxygen, where said composition is a mixed transition metal oxide comprising a non-stoichiometric amount of oxygen therein and exhibiting a superconducting state at a temperature greater than or equal to 26°K, a temperature controller for maintaining said composition in said superconducting state at a temperature greater than or equal to 26°K, and a source of an electrical current through said composition while said composition is in said superconducting state. # **CLAIM 288** Claim 288 which is allowed recites: CLAIM 288 An apparatus according to claim 287, where said transition metal is copper. ## CLAIM 289 recites: CLAIM 289 An apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ## CLAIM 290 recites: CLAIM 289 An apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 290 An apparatus according to claim 289 in which the <u>copper-oxide compound</u> of the superconductive composition <u>includes at least one element selected from the group consisting of a rare-earth element and a Group III B <u>element and at least one</u> alkaline-earth element.</u> The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has ## CLAIM 291 recites: CLAIM 289 An apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 290 An apparatus according to claim 289 in which the copper-oxide compound of the superconductive composition includes at least one element selected from the group consisting of a rare-earth element and a Group III B element and at least one alkaline-earth element. CLAIM 291 An apparatus according to claim 290 in which the rare-earth or (SIC) <u>element is lanthanum</u>. ## CLAIM 292 recites: CLAIM 289 An apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 290 An apparatus according to claim 289 in which the <u>copper-oxide compound</u> of the superconductive composition <u>includes at least one element selected from the group consisting of a rare-earth element and a Group III B <u>element and at least one</u> alkaline-earth element.</u> CLAIM 292 An apparatus according to claim 290 in which the <u>alkaline-earth element is barium.</u> ## CLAIM 293 recites: CLAIM 289 An apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 293 An apparatus according to claim 289 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ## CLAIM 294 recites: CLAIM 289 An apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductor
transition temperature Tc of greater than or equal to 26°K; - b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 293 An apparatus according to claim 289 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. CLAIM 294 An apparatus according to claim 293 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. ## CLAIM 295 recites: CLAIM 289 An apparatus for causing electric current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductor transition temperature Tc of greater than or equal to 26°K; - b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. CLAIM 293 An apparatus according to claim 289 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. CLAIM 294 An apparatus according to claim 293 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. CLAIM 295 An apparatus according to claim 294 in which oxygen is present in the <u>copper-oxide compound in a nonstoichiometric atomic proportion</u>. Claim 296 which is allowed recites: CLAIM 296 An apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a rare-earth element and a Group III B element and at least one alkaline-earth element, the composition comprising a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. Claim 297 which is allowed recites: CLAIM 297 An apparatus according to claim 296 in which said at least one element is lanthanum. # **CLAIM 298** Claim 298 which is allowed recites: CLAIM 298 An apparatus according to claim 296 in which the alkaline-earth element is barium. # **CLAIM 299** Claim 299 which is allowed recites: CLAIM 299 An apparatus according to claim 296 in which the copper-oxide compound of the superconductive composition includes mixed valent copper ions. Claim 300 which is allowed recites: CLAIM 300 An apparatus according to claim 299 in which the copper-oxide compound includes at least one element in a nonstoichiometric atomic proportion. # **CLAIM 301** Claim 301 which is allowed recites: CLAIM 301 An apparatus according to claim 300 in which oxygen is present in the copper-oxide compound in a nonstoichiometric atomic proportion. ### CLAIM 302 recites: CLAIM 302 An apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element, a rare earth element; and a Group III B element; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ### CLAIM 303 recites: CLAIM 303 An apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a Group II A element, a rare earth element and a Group III B element, the composition comprising a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 304 which is allowed recites: CLAIM 304 An apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition temperature Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. Claim 305 which is allowed recites: CLAIM 305 An apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a copper-oxide compound comprising a substantially layered perovskite crystal structure, the copper-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element
and a Group III B element, the composition comprising a superconductive/resistive transition defining a superconductive-resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. Claim 306 which is allowed recites: CLAIM 306 An apparatus for causing electric-current flow in a superconductive state at a temperature greater than or equal to 26°K, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal oxide compound comprising a substantially layered perovskite crystal structure, the composition comprising a superconductive transition temperature Tc of greater than or equal to 26°K, said superconductive composition includes at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element; - (b) a temperature controller for maintaining the superconductor element at a temperature greater than or equal to 26°K and below the superconductor transition Tc of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. Claim 307 which is allowed recites: CLAIM 307 An apparatus for conducting an electric current essentially without resistive losses, comprising: - (a) a superconductor element made of a superconductive composition, the superconductive composition consisting essentially of a transition metal-oxide compound comprising a substantially layered perovskite crystal structure, the transition metal-oxide compound including at least one element selected from the group consisting of a Group II A element and at least one element selected from the group consisting of a rare earth element and a Group III B element, the composition comprising a superconductive/resistive transition defining a superconductive/resistive-transition temperature range between an upper limit defined by a transition-onset temperature Tc and a lower limit defined by an effectively-zero-bulk-resistivity intercept temperature Tp=0, the transition-onset temperature Tc being greater than or equal to 26°K; - (b) a temperature controller for maintaining the superconductor element at a temperature below the effectively-zero-bulk-resistivity intercept temperature Tp=0 of the superconductive composition; and - (c) a source of an electric current to flow in the superconductor element. ### CLAIM 308 recites: CLAIM 273 An apparatus comprising a composition comprising a transition temperature greater than or equal to 26°K, the composition including a rare earth or alkaline earth element, a transition metal element capable of exhibiting multivalent states and oxygen, including at least one phase that exhibits superconductivity at temperature greater than or equal to 26°K, a temperature controller for maintaining said composition at said temperature to exhibit said superconductivity and a source of an electrical superconducting current through said composition with said phrase exhibiting said superconductivity. CLAIM 308 An apparatus according to claim 273 wherein said composition comprises a substantially layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ### CLAIM 309 recites: CLAIM 274 An apparatus comprising providing a superconducting transition metal oxide comprising a superconductive onset temperature greater than or equal to 26°K, a temperature controller for maintaining said superconducting <u>transition metal oxide</u> at a temperature less than said superconducting onset temperature and a source of a superconducting current therein. CLAIM 309 An apparatus according to claim 274 wherein said <u>superconducting transition metal oxide comprises a substantially layered perovskite crystal structure</u>. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| ### CLAIM 310 recites: CLAIM 275 An apparatus comprising <u>a superconducting</u> <u>copper oxide comprising a superconductive</u> onset temperature greater than or equal to 26°K, a temperature controller for maintaining said superconducting copper oxide at a temperature less than said superconducting onset temperature and a source of a superconducting current in said superconducting oxide. CLAIM 310 An apparatus according to claim 275 wherein said <u>superconducting copper oxide comprises a substantially layered perovskite crystal structure</u>. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| Claim 311 which is allowed recites: CLAIM 311 An apparatus according to claim 276 wherein said superconducting oxide composition comprises a substantially layered perovskite crystal structure. # **CLAIM 312** Claim 312 which is allowed recites: CLAIM 312 An apparatus according to claim 277 wherein said superconducting oxide composition comprises a substantially layered perovskite crystal structure. ### CLAIM 313 recites: CLAIM 278 An apparatus comprising a source of a superconducting electrical current in a <u>transition metal oxide</u> comprising a Tc greater than or equal to 26°K and a temperature controller for maintaining said transition metal oxide at a temperature less than said Tc. CLAIM 313 An apparatus according to claim 278 wherein said <u>transition (SIC) metal oxide comprises a substantially</u> layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the
Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. ### CLAIM 314 recites: CLAIM 279 An apparatus comprising a source of a superconducting current in a copper oxide comprising a Tc greater than or equal to 26°K and a temperature controller for maintaining said copper oxide at a temperature less than said Tc. CLAIM 314 An apparatus according to claim 279 wherein said copper oxide comprises <u>a substantially layered</u> <u>perovskite crystal structure</u>. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. Claim 315 which is allowed recites: CLAIM 315 An apparatus according to claim 280 wherein said composition comprises a substantially layered perovskite crystal structure. ### **CLAIM 316** Claim 316 which is allowed recites: CLAIM 316 An apparatus according to claim 281 wherein said composition of matter comprises a substantially layered perovskite crystal structure. ### **CLAIM 317** Claim 317 which is allowed recites: CLAIM 317 An apparatus according to claim 282 wherein said composition of matter comprises substantially layered perovskite crystal structure. ### CLAIM 318 recites: CLAIM 283 An apparatus comprising a source of a superconducting electrical current in a composition of matter comprising a Tc greater than or equal to 26°K, <u>said</u> composition comprising at least one each of a rare earth, <u>and copper oxide</u> and a temperature controller for maintaining said composition of matter at a temperature less than said Tc. CLAIM 318 An apparatus according to claim 283 wherein said composition of matter comprises a substantially layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| ### CLAIM 319 recites: CLAIM 284 An apparatus comprising a source of a superconducting electrical current in a composition of matter comprising a Tc greater than or equal to 26°K carrying, said composition comprising at least one each of a III B element, and copper oxide and a temperature controller for maintaining said composition of matter at a temperature less than said Tc. CLAIM 319 An apparatus according to claim 284 wherein said composition of matter <u>comprises substantially layered</u> <u>perovskite crystal structure</u>. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. | |--| ### CLAIM 320 recites: CLAIM 285 An apparatus comprising a source of a superconducting electrical current in a transition metal oxide comprising a Tc greater than or equal to 26°K and a temperature controller for maintaining said transition metal oxide at a temperature less than said Tc. CLAIM 320 An apparatus according to claim 285 wherein said transition metal oxide comprises substantially layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. #### CLAIM 321 recites: CLAIM 286 An apparatus comprising a source of a superconducting electrical <u>current in a copper oxide</u> <u>composition</u> of matter comprising a Tc greater than or equal to 26°K and a temperature controller for maintaining said copper oxide composition of matter at a temperature less than said Tc. CLAIM 321 An apparatus according to claim 286 wherein said copper oxide composition comprises substantially layered perovskite crystal structure. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in | view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. |
--| ### **CLAIM 322/84** CLAIM 322/84 recites: CLAIM 84 A superconducting combination, comprising: a mixed transition metal oxide composition containing a nonstoichiometric amount of oxygen therein, a transition metal and at least one additional element, said composition having substantially zero resistance to the flow of electricity therethrough when cooled to a superconducting state at a temperature greater than or equal to 26°K, said mixed transition metal oxide has a superconducting onset temperature greater than or equal to 26°K, and electrical means for passing an electrical superconducting current through said composition when said composition is in said superconducting state at a temperature greater than or equal to 26°K, and less than said superconducting onset temperature. CLAIM 322 A superconductive combination according to anyone of claims 84 or 85, wherein <u>said mixed transition</u> metal oxide can be made according to known principles of ceramic science. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. The sentenced bridging page 1 and 2 of the specification states "Generally, superconductivity is considered to be a property of the metallic state of a material since all known superconductors are metallic under the conditions that cause them to be superconducting. A few normally non-metallic materials, for example, become superconducting under very high pressure wherein the pressure converts them to metals before they exhibit superconducting behavior." Applicants discovered that ceramic materials are superconductors. ### **CLAIM 322/85** ### CLAIM 322/85 recites: CLAIM 84 A superconducting combination, comprising: a mixed transition metal oxide composition containing a nonstoichiometric amount of oxygen therein, a transition metal and at least one additional element, said composition having substantially zero resistance to the flow of electricity therethrough when cooled to a superconducting state at a temperature greater than or equal to 26°K, said mixed transition metal oxide has a superconducting onset temperature greater than or equal to 26°K, and electrical means for passing an electrical superconducting current through said composition when said composition is in said superconducting state at a temperature greater than or equal to 26°K, and less than said superconducting onset temperature. CLAIM 85 The combination of claim 84, where said transition metal is copper. CLAIM 322 A superconductive combination according to anyone of claims 84 or 85, wherein <u>said mixed transition</u> metal oxide can be made according to known principles of ceramic science. The Examiner has not made as to this claim a prima facie case of lack of enablement for the reasons given in all volumes of this Brief. The Examiner has given no specific reasons for rejecting this claim as not enabled. The Examiner has not shown why a person of ordinary skill in the art cannot, based on Applicants' teaching, determine without undue experimentation, species that come within the scope of this claim other than those that the Examiner has expressly stated are enabled. Applicants have shown extensive evidence that persons of skill in the art can determine species within the scope of this claim without undue experimentation. Examples of Applicants' evidence are: the Examiner's First, Second, Third and Fourth Enablement Statements, the Poole 1988, 1995 and 1996 Enablement Statements, the Schuller Enablement Statement and Applicants' Affidavits of Mitzi, Dinger, Tsuei, Shaw, Duncombe, Newns and Bednorz in Brief Attachments AH to AR. In particular the Examiner has given no reason for why this claim is not enabled by Applicants' teaching in view of the underlined limitation of the claim which includes specific limitations on the scope of this claim. The sentenced bridging page 1 and 2 of the specification states "Generally, superconductivity is considered to be a property of the metallic state of a material since all known superconductors are metallic under the conditions that cause them to be superconducting. A few normally non-metallic materials, for example, become superconducting under very high pressure wherein the pressure converts them to metals before they exhibit superconducting behavior." Applicants discovered that ceramic materials are superconductors.